stock-vit/m6_vit_1d.py

154 lines
4.1 KiB
Python
Raw Permalink Normal View History

2024-08-06 11:08:31 +08:00
import torch
from torch import nn
from einops import rearrange, repeat, pack, unpack
from einops.layers.torch import Rearrange
# classes
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout=0.0):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout),
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads=8, dim_head=64, dropout=0.0):
super().__init__()
inner_dim = dim_head * heads
project_out = not (heads == 1 and dim_head == dim)
self.heads = heads
self.scale = dim_head**-0.5
self.norm = nn.LayerNorm(dim)
self.attend = nn.Softmax(dim=-1)
self.dropout = nn.Dropout(dropout)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False)
self.to_out = (
nn.Sequential(nn.Linear(inner_dim, dim), nn.Dropout(dropout))
if project_out
else nn.Identity()
)
def forward(self, x):
x = self.norm(x)
qkv = self.to_qkv(x).chunk(3, dim=-1)
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=self.heads), qkv)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
attn = self.attend(dots)
attn = self.dropout(attn)
out = torch.matmul(attn, v)
out = rearrange(out, "b h n d -> b n (h d)")
return self.to_out(out)
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout=0.0):
super().__init__()
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(
nn.ModuleList(
[
Attention(dim, heads=heads, dim_head=dim_head, dropout=dropout),
FeedForward(dim, mlp_dim, dropout=dropout),
]
)
)
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return x
class ViT1D(nn.Module):
def __init__(
self,
*,
seq_len,
patch_size,
num_classes,
dim,
depth,
heads,
mlp_dim,
channels=3,
dim_head=64,
dropout=0.0,
emb_dropout=0.0
):
super().__init__()
assert (seq_len % patch_size) == 0
num_patches = seq_len // patch_size
patch_dim = channels * patch_size
self.to_patch_embedding = nn.Sequential(
Rearrange("b c (n p) -> b n (p c)", p=patch_size),
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim),
)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
self.cls_token = nn.Parameter(torch.randn(dim))
self.dropout = nn.Dropout(emb_dropout)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)
self.mlp_head = nn.Sequential(nn.LayerNorm(dim), nn.Linear(dim, num_classes))
def forward(self, series):
x = self.to_patch_embedding(series)
b, n, _ = x.shape
cls_tokens = repeat(self.cls_token, "d -> b d", b=b)
x, ps = pack([cls_tokens, x], "b * d")
x += self.pos_embedding[:, : (n + 1)]
x = self.dropout(x)
x = self.transformer(x)
cls_tokens, _ = unpack(x, ps, "b * d")
return self.mlp_head(cls_tokens)
if __name__ == "__main__":
v = ViT1D(
seq_len=256,
patch_size=16, # 这里也就是特征的数量。
num_classes=1000,
dim=1024,
depth=6,
heads=8,
mlp_dim=2048,
dropout=0.1,
emb_dropout=0.1,
)
time_series = torch.randn(4, 3, 256)
logits = v(time_series) # (4, 1000)