import torch from torch.utils.data import DataLoader from torch.utils.data import random_split from torch import nn from einops.layers.torch import Rearrange from torch import Tensor import torch.optim as optim import numpy as np import torch import os import pandas as pd from m3_loaddatasets import DatasetsDay from m6_vit import Vit3D ############################################################################# seq_length = 50 features_len=8 device = "cuda" m = torch.load("./model1.pt").to(device) ############################################################################# features_files = "./datasets/features1" files = [ os.path.join(features_files, a) for a in sorted(os.listdir(features_files), key=lambda x: (x[4:])) ] zdfs = [] for file in files: print(file) epoch_losses = [] d = pd.read_csv(file) a = DatasetsDay(d,day_length=seq_length) x = DatasetsDay.get_last_item() x = x.to(device) outputs = m(x) cls = outputs.argmax() zdf = cls / 1000 - 0.3 + 1 print(zdf) zdfs.append(zdf)